Mmg
Simplicial remeshers (mesh adaptation, isovalue discretization, lagrangian movement)
Functions | Variables
split_3d.c File Reference

Functions to create new points. More...

#include "libmmg3d.h"
#include "inlined_functions_3d_private.h"
#include "mmg3dexterns_private.h"
Include dependency graph for split_3d.c:

Go to the source code of this file.

Functions

void MMG3D_split1_cfg (MMG5_int flag, uint8_t *tau, const uint8_t **taued)
 
int MMG3D_split1_sim (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6])
 
int MMG5_split1 (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6], int8_t metRidTyp)
 
static int MMG3D_normalDeviation (MMG5_pMesh mesh, MMG5_int start, int8_t iface, int8_t ia, MMG5_int idx, MMG5_int ip, double n0[3])
 
int MMG3D_simbulgept (MMG5_pMesh mesh, MMG5_pSol met, int64_t *list, int ret, MMG5_int ip)
 
int MMG3D_normalAdjaTri (MMG5_pMesh mesh, MMG5_int start, int8_t iface, int ia, double n[3])
 
static int MMG5_split1b_eltspl (MMG5_pMesh mesh, MMG5_int ip, MMG5_int k, int64_t *list, MMG5_int *newtet, uint8_t tau[4])
 
int MMG5_split1b (MMG5_pMesh mesh, MMG5_pSol met, int64_t *list, int ret, MMG5_int ip, int cas, int8_t metRidTyp, int8_t chkRidTet)
 
void MMG3D_split2sf_cfg (MMG5_int flag, MMG5_int v[4], uint8_t *tau, const uint8_t **taued, uint8_t *imin)
 
int MMG3D_split2sf_sim (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6])
 
static int MMG3D_crea_newTetra (MMG5_pMesh mesh, const int ne, MMG5_int *newtet, MMG5_pTetra *pt, MMG5_xTetra *xt, MMG5_pxTetra *pxt0)
 
static void MMG3D_update_qual (MMG5_pMesh mesh, MMG5_pSol met, const int ne, MMG5_int *newtet, MMG5_pTetra *pt, int8_t metRidTyp)
 
int MMG5_split2sf (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6], int8_t metRidTyp)
 
int MMG5_split2sf_globNum (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6], MMG5_int vGlobNum[4], int8_t metRidTyp)
 
int MMG3D_split2_sim (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6])
 
int MMG5_split2 (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6], int8_t metRidTyp)
 
int MMG3D_split3_sim (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6])
 
int MMG5_split3 (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6], int8_t metRidTyp)
 
void MMG3D_split3cone_cfg (MMG5_int flag, MMG5_int v[4], uint8_t tau[4], const uint8_t **taued, uint8_t *ia, uint8_t *ib)
 
int MMG3D_split3cone_sim (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6])
 
int MMG5_split3cone (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6], int8_t metRidTyp)
 
int MMG5_split3cone_globNum (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6], MMG5_int vGlobNum[4], int8_t metRidTyp)
 
static void MMG3D_split3op_cfg (MMG5_pTetra pt, MMG5_int vx[6], uint8_t tau[4], const uint8_t **taued, uint8_t sym[4], uint8_t symed[6], uint8_t *ip0, uint8_t *ip1, uint8_t *ip2, uint8_t *ip3, uint8_t *ie0, uint8_t *ie1, uint8_t *ie2, uint8_t *ie3, uint8_t *ie4, uint8_t *ie5, uint8_t *imin03, uint8_t *imin12)
 
int MMG3D_split3op_sim (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6])
 
int MMG5_split3op (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6], int8_t metRidTyp)
 
MMG5_int MMG5_split4bar (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, int8_t metRidTyp)
 
static void MMG3D_split4sf_cfg (MMG5_pTetra pt, MMG5_int vx[6], uint8_t tau[4], const uint8_t **taued, uint8_t *imin23, uint8_t *imin12)
 
int MMG3D_split4sf_sim (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6])
 
int MMG5_split4sf (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6], int8_t metRidTyp)
 
void MMG3D_split4op_cfg (MMG5_int flag, MMG5_int v[4], uint8_t tau[4], const uint8_t **taued, uint8_t *imin01, uint8_t *imin23)
 
int MMG3D_split4op_sim (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6])
 
int MMG5_split4op (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6], int8_t metRidTyp)
 
int MMG5_split4op_globNum (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6], MMG5_int vGlobNum[4], int8_t metRidTyp)
 
static void MMG3D_split5_cfg (MMG5_pTetra pt, MMG5_int vx[6], uint8_t tau[4], const uint8_t **taued, uint8_t *imin)
 
int MMG3D_split5_sim (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6])
 
int MMG5_split5 (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6], int8_t metRidTyp)
 
int MMG3D_split6_sim (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6])
 
int MMG5_split6 (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int vx[6], int8_t metRidTyp)
 
static int MMG3D_chksplit (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int ip, int64_t *list, int ret, double crit)
 
MMG5_int MMG5_splitedg (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int iel, int iar, double crit)
 

Variables

int8_t ddb
 

Detailed Description

Functions to create new points.

Author
Charles Dapogny (UPMC)
Cécile Dobrzynski (Bx INP/Inria/UBordeaux)
Pascal Frey (UPMC)
Algiane Froehly (Inria/UBordeaux)
Version
5
Todo:
Doxygen documentation

Definition in file split_3d.c.

Function Documentation

◆ MMG3D_chksplit()

static int MMG3D_chksplit ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  ip,
int64_t *  list,
int  ret,
double  crit 
)
inlinestatic
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
ipindex of new point.
listpointer to the shell of edge.
retsize of the shell of edge.
critquality threshold.
Returns
0 if fail, 1 otherwise.

Check quality before split.

Definition at line 4862 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_crea_newTetra()

static int MMG3D_crea_newTetra ( MMG5_pMesh  mesh,
const int  ne,
MMG5_int *  newtet,
MMG5_pTetra pt,
MMG5_xTetra xt,
MMG5_pxTetra pxt0 
)
inlinestatic
Parameters
meshpointer to the mesh structure.
newtetlist of indices of the new tetra.
nenumber of tetra in the list.
ptlist of tetra.
xtlist of xtetra.
pxt0xtetra associated to the first tetra of the list
Returns
0 if fail, 1 otherwise

Create a list of new tetra whose indices are passed in newtet.

Definition at line 1166 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_normalAdjaTri()

int MMG3D_normalAdjaTri ( MMG5_pMesh  mesh,
MMG5_int  start,
int8_t  iface,
int  ia,
double  n[3] 
)
Parameters
meshpointer to the mesh structure
startindex of the working tetra
ifacelocal index of the boundary face of the tetra start
ialocal index on face iface of the edge through which we seek the adjacent triangle of the triangle iface of start.
nnormal of the new boundary face in the tetra idx.
Returns
1 if success, 0 if we want to refuse the collapse, -1 if fail.

Compute the normal of the adjacent triangle of the triangle iface of the tetra start through the edge ia (in local numbering of the face).

Store the adjacent boundary triangle (triangle adjacent to iface through the edge ia

Compute the normal of the second triangle

Definition at line 472 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_normalDeviation()

static int MMG3D_normalDeviation ( MMG5_pMesh  mesh,
MMG5_int  start,
int8_t  iface,
int8_t  ia,
MMG5_int  idx,
MMG5_int  ip,
double  n0[3] 
)
inlinestatic
Parameters
meshpointer to the mesh structure
startindex of the tetra that we want to split
ifacelocal index of the boundary face that we want to split
ialocal index of the boundary edge that we want to split
idxlocal index of the new tetra that we want to study after the splitting of the tetra start (idx=0 or 1)
ipnew point index
n0normal of the new boundary face in the tetra idx.
Returns
1 if success (no new sharp angle), 0 if we create a sharp angle, -1 if fail.

Check that the split of the edge ia of the tetra start does not create a ridge along the \( idx^{th} \) edge opposite to ip in the boundary triangle iface. Store the normal of the \( idx^{th} \) boundary triangle in n0.

Store the first boundary triangle (the one that is created in the boundary face that we split)

Compute the normal of the first triangle

Compute the normal of the second triangle (triangle adjacent to the first through the edge iploc)

Definition at line 272 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_simbulgept()

int MMG3D_simbulgept ( MMG5_pMesh  mesh,
MMG5_pSol  met,
int64_t *  list,
int  ret,
MMG5_int  ip 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric.
listpointer to the edge shell.
retsize of the edge shell.
ipnew point index.
Returns
1 if all checks are ok
0 if fail due to a very bad quality elt
2 if fail due to a ridge angle creation

Simulate at the same time creation and bulging of one point, with new position o and tag tag, to be inserted at an edge, whose shell is passed.

Check the deviation for new triangles

Definition at line 330 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_split1_cfg()

void MMG3D_split1_cfg ( MMG5_int  flag,
uint8_t *  tau,
const uint8_t **  taued 
)
inline
Parameters
flagflag to detect the splitting configuration
tauvertices permutation
tauededges permutation

Compute vertices and edges permutation for the split of 1 edge depending of the edge that is splitted (i^th bit of flag is 1 if the i^th edge is splitted).

Definition at line 53 of file split_3d.c.

Here is the caller graph for this function:

◆ MMG3D_split1_sim()

int MMG3D_split1_sim ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6] 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
Returns
0 if split leads to invalid situation, else 1.

Simulate the splitting of 1 edge of element

Definition at line 94 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_split2_sim()

int MMG3D_split2_sim ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6] 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
Returns
0 if the split fail, 1 otherwise

Simulate split of two opposite edges.

Definition at line 1427 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_split2sf_cfg()

void MMG3D_split2sf_cfg ( MMG5_int  flag,
MMG5_int  v[4],
uint8_t *  tau,
const uint8_t **  taued,
uint8_t *  imin 
)
inline
Parameters
flagflag to detect the splitting configuration
vindices of the tetra nodes (global node indices if called from ParMmg in ls mode)
tauvertices permutation
tauededges permutation

Compute vertices and edges permutation for the split of 2 edge along the same face. The configuration flag is computed such as the i^th bit of flag is 1 if the i^th edge is splitted).

Definition at line 1037 of file split_3d.c.

Here is the caller graph for this function:

◆ MMG3D_split2sf_sim()

int MMG3D_split2sf_sim ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6] 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
Returns
0 if the split fail, 1 otherwise

Simulate split of two edges that belong to a common face

Definition at line 1103 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_split3_sim()

int MMG3D_split3_sim ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6] 
)

Simulate split of 1 face (3 edges)

Definition at line 1636 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_split3cone_cfg()

void MMG3D_split3cone_cfg ( MMG5_int  flag,
MMG5_int  v[4],
uint8_t  tau[4],
const uint8_t **  taued,
uint8_t *  ia,
uint8_t *  ib 
)
inline
Parameters
flaginitial tetra
vindices of the tetra nodes (global node indices if called from ParMmg in ls mode)
tauvertices permutation
tauededges permutation
iafirst condition to choose the split
ibsecond condition to choose the split

Set permutation of vertices for the split of 3 edges in cone configuration. Reference configuration 7.

Definition at line 1863 of file split_3d.c.

Here is the caller graph for this function:

◆ MMG3D_split3cone_sim()

int MMG3D_split3cone_sim ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6] 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
Returns
0 if the split fail, 1 otherwise

Simulate split of 3 edges in cone configuration.

Definition at line 1921 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_split3op_cfg()

static void MMG3D_split3op_cfg ( MMG5_pTetra  pt,
MMG5_int  vx[6],
uint8_t  tau[4],
const uint8_t **  taued,
uint8_t  sym[4],
uint8_t  symed[6],
uint8_t *  ip0,
uint8_t *  ip1,
uint8_t *  ip2,
uint8_t *  ip3,
uint8_t *  ie0,
uint8_t *  ie1,
uint8_t *  ie2,
uint8_t *  ie3,
uint8_t *  ie4,
uint8_t *  ie5,
uint8_t *  imin03,
uint8_t *  imin12 
)
inlinestatic
Parameters
ptinitial tetra
vxindex of points to insert along edges
tauvertices permutation
tauededges permutation
symvertices symmetry
symededges symmetry
ip0vertex 0 for reference config
ip1vertex 1 for reference config
ip2vertex 2 for reference config
ip3vertex 3 for reference config
ie0edge 0 for reference config
ie1edge 1 for reference config
ie2edge 2 for reference config
ie3edge 3 for reference config
ie4edge 4 for reference config
ie5edge 5 for reference config
imin03minimal index of vertices ip0 and ip3
imin12minimal index of vertices ip1 and ip2

Set permutation /symmetry of vertices for 3 opposite edges config: generic case : 35

Definition at line 2365 of file split_3d.c.

Here is the caller graph for this function:

◆ MMG3D_split3op_sim()

int MMG3D_split3op_sim ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6] 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
Returns
0 if the split fail, 1 otherwise

Simulate split of 3 edges in opposite configuration.

Definition at line 2522 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_split4op_cfg()

void MMG3D_split4op_cfg ( MMG5_int  flag,
MMG5_int  v[4],
uint8_t  tau[4],
const uint8_t **  taued,
uint8_t *  imin01,
uint8_t *  imin23 
)
inline
Parameters
flaginitial tetra
vindices of tetra nodes (global node indices if called from ParMmg in ls mode)
tauvertices permutation
tauededges permutation
imin01minimal index of vertices ip0 and ip1
imin23minimal index of vertices ip2 and ip3

Set permutation of vertices for the split of 4 edges when on opposite edges. Reference configuration 30.

Definition at line 3649 of file split_3d.c.

Here is the caller graph for this function:

◆ MMG3D_split4op_sim()

int MMG3D_split4op_sim ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6] 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
Returns
0 if the split fail, 1 otherwise

Simulate split of 4 edges in opposite configuration.

Definition at line 3685 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_split4sf_cfg()

static void MMG3D_split4sf_cfg ( MMG5_pTetra  pt,
MMG5_int  vx[6],
uint8_t  tau[4],
const uint8_t **  taued,
uint8_t *  imin23,
uint8_t *  imin12 
)
inlinestatic
Parameters
ptinitial tetra
vxindex of points to insert along edges
tauvertices permutation
tauededges permutation
imin23minimal index of vertices ip0 and ip3
imin12minimal index of vertices ip1 and ip2

Set permutation of vertices for the split of 4 edges when 3 lie on the same face. Reference configuration 23

Definition at line 3260 of file split_3d.c.

Here is the caller graph for this function:

◆ MMG3D_split4sf_sim()

int MMG3D_split4sf_sim ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6] 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
Returns
0 if the split fail, 1 otherwise

Simulate split of 4 edges in a configuration when 3 lie on the same face.

Definition at line 3337 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_split5_cfg()

static void MMG3D_split5_cfg ( MMG5_pTetra  pt,
MMG5_int  vx[6],
uint8_t  tau[4],
const uint8_t **  taued,
uint8_t *  imin 
)
inlinestatic
Parameters
ptinitial tetra
vxindex of points to insert along edges
tauvertices permutation
tauededges permutation
iminminimal index of vertices tau[0] and tau[1]

Set permutation of vertices for the split of 5 edges. Reference configuration is 62.

Definition at line 4062 of file split_3d.c.

Here is the caller graph for this function:

◆ MMG3D_split5_sim()

int MMG3D_split5_sim ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6] 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
Returns
0 if the split fail, 1 otherwise

Simulate split of 5 edges.

Definition at line 4111 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_split6_sim()

int MMG3D_split6_sim ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6] 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
Returns
0 if the split fail, 1 otherwise

Simulate split of 6 edges.

Definition at line 4414 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG3D_update_qual()

static void MMG3D_update_qual ( MMG5_pMesh  mesh,
MMG5_pSol  met,
const int  ne,
MMG5_int *  newtet,
MMG5_pTetra pt,
int8_t  metRidTyp 
)
inlinestatic
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
nenumber of tetra in the list
newtetlist of tetra indices
ptlist of tetra
metRidTypmetric storage (classic or special)
Returns
0 if fail, 1 otherwise

Compute the quality of the nnew tetra of the list pt.

Definition at line 1219 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split1()

int MMG5_split1 ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6],
int8_t  metRidTyp 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
metRidTypmetric storage (classic or special)

Split 1 edge of tetra k.

Definition at line 134 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split1b()

int MMG5_split1b ( MMG5_pMesh  mesh,
MMG5_pSol  met,
int64_t *  list,
int  ret,
MMG5_int  ip,
int  cas,
int8_t  metRidTyp,
int8_t  chkRidTet 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
listpointer to the shell of edge.
retsize of the shell of edge.
ipidex of new point.
casflag to watch the length of the new edges.
metRidTypType of storage of ridges metrics: 0 for classic storage, 1 for special storage.
chkRidTetif 1, avoid the creation of a tet with 4 ridge vertices
Returns
-1 if we fail, 0 if we don't split the edge, 1 if success.

Split edge \(list[0]\%6\), whose shell list is passed, introducing point ip Beware : shell has to be enumerated in ONLY ONE TRAVEL (always same sense).

2 different checks : 1) are we creating a too small edge (BUG_Split1b_SpereIso_0.125h_met) 2) in aniso and from the last wave of anatet(typchk=1): avoid the creation of a tetra with 4 ridge vertices.

Definition at line 629 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split1b_eltspl()

static int MMG5_split1b_eltspl ( MMG5_pMesh  mesh,
MMG5_int  ip,
MMG5_int  k,
int64_t *  list,
MMG5_int *  newtet,
uint8_t  tau[4] 
)
inlinestatic
Parameters
meshpointer to the mesh structure.
ipindex of new point.
kposition of the tetra to split in the shell of edge.
listpointer to the shell of edge.
newtetlist of indices of created tetra
tauvertices permutation
Returns
1 if success, 0 if fail.

Update and fill the tetra and xtetra data when splitting one edge of a tetra.

Definition at line 519 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split2()

int MMG5_split2 ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6],
int8_t  metRidTyp 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
metRidTypmetric storage (classic or special)
Returns
0 if fail, 1 otherwise

Split of two OPPOSITE edges

Definition at line 1489 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split2sf()

int MMG5_split2sf ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6],
int8_t  metRidTyp 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
metRidTypmetric storage (classic or special)

Split of two edges that belong to a common face : 1 tetra becomes 3

Definition at line 1254 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split2sf_globNum()

int MMG5_split2sf_globNum ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6],
MMG5_int  vGlobNum[4],
int8_t  metRidTyp 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
vGlobNumvertices indices of the tetra k (global node indices if called from ParMmg in ls mode).
metRidTypmetric storage (classic or special)
Returns
0 if fail, 1 otherwise

Split of two edges that belong to a common face : 1 tetra becomes 3

Definition at line 1276 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split3()

int MMG5_split3 ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6],
int8_t  metRidTyp 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
metRidTypmetric storage (classic or special)
Returns
0 if fail, 1 otherwise

1 face (3 edges) subdivided

Definition at line 1707 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split3cone()

int MMG5_split3cone ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6],
int8_t  metRidTyp 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
metRidTypmetric storage (classic or special)

Split 3 edge in cone configuration

Definition at line 2059 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split3cone_globNum()

int MMG5_split3cone_globNum ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6],
MMG5_int  vGlobNum[4],
int8_t  metRidTyp 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
vGlobNumvertices indices of the tetra k (global node indices if called from ParMmg in ls mode).
metRidTypmetric storage (classic or special)
Returns
0 if fail, 1 otherwise

Split 3 opposite edges in a tetra

Definition at line 2081 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split3op()

int MMG5_split3op ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6],
int8_t  metRidTyp 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
metRidTypmetric storage (classic or special)
Returns
0 if fail, 1 otherwise

Split 3 opposite edges in a tetra

Definition at line 2654 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split4bar()

MMG5_int MMG5_split4bar ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
int8_t  metRidTyp 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
ktetra index.
metRidTypmetric storage (classic or special)
Returns
0 if fail, index of created point otherwise (ib)

Split a tetra in 4 tetras by introducing its barycenter. FOR NOW : flags, that tell which edge should be split, are not updated (erased) : UPDATE NEEDED ?

Definition at line 3050 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split4op()

int MMG5_split4op ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6],
int8_t  metRidTyp 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
metRidTypmetric storage (classic or special)

Split 4 edges in a configuration when no 3 edges lie on the same face

Definition at line 3804 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split4op_globNum()

int MMG5_split4op_globNum ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6],
MMG5_int  vGlobNum[4],
int8_t  metRidTyp 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
vGlobNumvertices indices of the tetra k (global node indices if called from ParMmg in ls mode).
metRidTypmetric storage (classic or special)
Returns
0 if fail, 1 otherwise

Split 4 edges in a configuration when no 3 edges lie on the same face

Definition at line 3826 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split4sf()

int MMG5_split4sf ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6],
int8_t  metRidTyp 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
metRidTypmetric storage (classic or special)
Returns
0 if fail, 1 otherwise

Split 4 edges in a configuration when 3 lie on the same face

Definition at line 3440 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split5()

int MMG5_split5 ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6],
int8_t  metRidTyp 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
metRidTypmetric storage (classic or special)
Returns
0 if fail, 1 otherwise

Split 5 edges

Definition at line 4203 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_split6()

int MMG5_split6 ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int  vx[6],
int8_t  metRidTyp 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
metRidTypmetric storage (classic or special)
Returns
0 if fail, 1 otherwise

split all faces (6 edges)

Definition at line 4483 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_splitedg()

MMG5_int MMG5_splitedg ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  iel,
int  iar,
double  crit 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
ieltetra index
iaredge index of iel
critquality threshold.
Returns
-1 if lack of memory, 0 if we don't split the edge, ip if success.

Split edge iar of iel and verify that every new tet have a better quality than crit

Definition at line 4916 of file split_3d.c.

Here is the call graph for this function:
Here is the caller graph for this function:

Variable Documentation

◆ ddb

int8_t ddb
extern

Definition at line 42 of file mmg3d1_delone.c.