Mmg
Simplicial remeshers (mesh adaptation, isovalue discretization, lagrangian movement)
Functions
split_s.c File Reference

Functions to create new points. More...

#include "libmmgs_private.h"
#include "mmgsexterns_private.h"
#include "mmgexterns_private.h"
Include dependency graph for split_s.c:

Go to the source code of this file.

Functions

int MMGS_split1_sim (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, int i, MMG5_int *vx)
 
int MMGS_split1 (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, int i, MMG5_int *vx)
 
int MMGS_simbulgept (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, int i, MMG5_int ip)
 
int split1b (MMG5_pMesh mesh, MMG5_int k, int8_t i, MMG5_int ip)
 
int MMG5_split2_sim (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int *vx)
 
int MMGS_split2 (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int *vx)
 
int MMGS_split3_sim (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int *vx)
 
int MMGS_split3 (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int k, MMG5_int *vx)
 

Detailed Description

Functions to create new points.

Author
Charles Dapogny (UPMC
Cécile Dobrzynski (Bx INP/Inria/UBordeaux
Pascal Frey (UPMC
Algiane Froehly (Inria/UBordeaux
Version
5

Definition in file split_s.c.

Function Documentation

◆ MMG5_split2_sim()

int MMG5_split2_sim ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int *  vx 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
Returns
0 if split leads to invalid element, else 1.

Simulate the splitting of element k along the 2 edges i1 and i2. Check that the new triangles are not empty (otherwise we can create a 0 surface triangle).

Definition at line 383 of file split_s.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMGS_simbulgept()

int MMGS_simbulgept ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
int  i,
MMG5_int  ip 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of the starting triangle.
ilocal index of the edge to split in k.
ipindex of the point that we try to create.
Returns
0 if final position is invalid or if computation of bezier patch fails, 1 if all checks are ok.

Simulate the creation of the point ip, to be inserted at an edge. Check that the new triangles are not empty (otherwise we can create a 0 surface triangle).

Remarks
Don't work for non-manifold edge.

Definition at line 162 of file split_s.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMGS_split1()

int MMGS_split1 ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
int  i,
MMG5_int *  vx 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
iindex of edge to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
Returns
1 if success, 0 if fail.

Split element k along edge i.

Definition at line 109 of file split_s.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMGS_split1_sim()

int MMGS_split1_sim ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
int  i,
MMG5_int *  vx 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
iindex of edge to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
kindex of element to split.
Returns
0 if split leads to invalid element, else 1.

Simulate the splitting of element k along edge i. Check that the new triangles are not empty (otherwise we can create a 0 surface triangle).

Definition at line 52 of file split_s.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMGS_split2()

int MMGS_split2 ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int *  vx 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
Returns
1 if success, 0 if fail.

Split element k along the 2 edges i1 and i2.

Definition at line 459 of file split_s.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMGS_split3()

int MMGS_split3 ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int *  vx 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
Returns
1 if success, 0 if fail.

Split element k along the 3 edges

Definition at line 620 of file split_s.c.

Here is the call graph for this function:

◆ MMGS_split3_sim()

int MMGS_split3_sim ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  k,
MMG5_int *  vx 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
kindex of element to split.
vx\(vx[i]\) is the index of the point to add on the edge i.
Returns
0 if split leads to invalid element, else 1.

Simulate the splitting of element k along the 3 edges. Check that the new triangles are not empty (otherwise we can create a 0 surface triangle).

Definition at line 532 of file split_s.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ split1b()

int split1b ( MMG5_pMesh  mesh,
MMG5_int  k,
int8_t  i,
MMG5_int  ip 
)
Parameters
meshpointer to the mesh structure.
kindex of element to split.
iindex of edge to split.
ipindex of the new point.
Returns
0 if lack of memory, 1 otherwise.

Split element k along edge i, inserting point ip and updating the adjacency relations.

Remarks
do not call this function in non-manifold case

Definition at line 283 of file split_s.c.

Here is the call graph for this function:
Here is the caller graph for this function: