Mmg
Simplicial remeshers (mesh adaptation, isovalue discretization, lagrangian movement)
Functions
mettools.c File Reference

Metric tools for the mmg applications. More...

#include "mmgcommon_private.h"
#include "inlined_functions_private.h"
Include dependency graph for mettools.c:

Go to the source code of this file.

Functions

static void MMG5_eigenvmat_buildsym (MMG5_pMesh mesh, int8_t dim, double m[], double lambda[], double v[])
 
static void MMG5_eigenvmat_buildnonsym (MMG5_pMesh mesh, int8_t dim, double m[], double lambda[], double v[], double iv[])
 
int MMG5_eigenvmatsym2d (MMG5_pMesh mesh, double m[], double lambda[], double v[][2])
 
int MMG5_eigenvmatsym3d (MMG5_pMesh mesh, double m[], double lambda[], double v[][3])
 
int MMG5_eigenvmatnonsym2d (MMG5_pMesh mesh, double m[], double lambda[], double v[][2])
 
int MMG5_eigenvmatnonsym3d (MMG5_pMesh mesh, double m[], double lambda[], double v[][3])
 
int MMG5_eigenvmat_check (MMG5_pMesh mesh, int8_t dim, int8_t symmat, double m[], double mnew[])
 
void MMG5_sort_eigenv (int8_t dim, double *lambda, double *vp, double *swap, int8_t *perm)
 
int MMG5_test_eigenvmatsym2d (MMG5_pMesh mesh, double *mex, double lambdaex[], double vpex[][2])
 
int MMG5_test_eigenvmatnonsym2d (MMG5_pMesh mesh, double *mex, double lambdaex[], double vpex[][2], double ivpex[][2])
 
int MMG5_test_eigenvmatsym3d (MMG5_pMesh mesh, double *mex, double lambdaex[], double vpex[][3])
 
int MMG5_test_eigenvmatnonsym3d (MMG5_pMesh mesh, double *mex, double lambdaex[], double vpex[][3], double ivpex[][3])
 
int MMG5_buildridmetfic (MMG5_pMesh mesh, double t[3], double n[3], double dtan, double dv, double dn, double m[6])
 
int MMG5_intmetsavedir (MMG5_pMesh mesh, double *m, double *n, double *mr)
 
int MMG5_buildridmet (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int np0, double ux, double uy, double uz, double mr[6], double r[3][3])
 
int MMG5_buildridmetnor (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int np0, double nt[3], double mr[6], double r[3][3])
 
int MMG5_intersecmet22 (MMG5_pMesh mesh, double *m, double *n, double *mr)
 
int MMG5_intersecmet33 (MMG5_pMesh mesh, double *m, double *n, double *mr)
 
int MMG5_test_intersecmet22 (MMG5_pMesh mesh)
 
int MMG5_test_intersecmet33 (MMG5_pMesh mesh)
 
int MMG5_mmgIntextmet (MMG5_pMesh mesh, MMG5_pSol met, MMG5_int np, double me[6], double n[3])
 
int MMG5_paratmet (double c0[3], double n0[3], double m[6], double c1[3], double n1[3], double mt[6])
 

Detailed Description

Metric tools for the mmg applications.

Author
Charles Dapogny (UPMC)
Cécile Dobrzynski (Bx INP/Inria/UBordeaux)
Pascal Frey (UPMC)
Algiane Froehly (Inria/UBordeaux)
Version
5

Definition in file mettools.c.

Function Documentation

◆ MMG5_buildridmet()

int MMG5_buildridmet ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  np0,
double  ux,
double  uy,
double  uz,
double  mr[6],
double  r[3][3] 
)
Parameters
meshpointer to the mesh structure.
metpointer to the sol structure.
np0index of edge's extremity.
uxdistance \([p0;p1]\) along x axis.
uydistance \([p0;p1]\) along y axis.
uzdistance \([p0;p1]\) along z axis.
mrcomputed metric tensor.
rbasis in which the metric is diagona
Returns
1 if success

Build metric tensor at ridge point p0, when computations with respect to p1 are to be held. Store the basis vectors in r.

Remarks
ALGIANE: a mettre à plat : si p0-p1 est une ridge, on peut reconstruire la mauvaise métrique non? Est-ce qu'il ne vaut mieux pas passer la normale au triangle d'où l'on vient en argument pour le choix de la métrique à reconstruire si c'est possible(quand on vient de grad2metSurfreq)?

Definition at line 676 of file mettools.c.

Here is the caller graph for this function:

◆ MMG5_buildridmetfic()

int MMG5_buildridmetfic ( MMG5_pMesh  mesh,
double  t[3],
double  n[3],
double  dtan,
double  dv,
double  dn,
double  m[6] 
)
inline
Parameters
meshpointer to the mesh structure.
ttangent at the ridge point.
nnormal at the ridge point.
dtanmetric size along the tangent direction.
dvmetric size along the \(t^{}n\) direction.
dnmetric size along the normal direction.
mcomputed metric at the ridge point.
Returns
1

Build metric tensor at a fictitious ridge point, whose normal and tangent are provided.

Definition at line 601 of file mettools.c.

Here is the caller graph for this function:

◆ MMG5_buildridmetnor()

int MMG5_buildridmetnor ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  np0,
double  nt[3],
double  mr[6],
double  r[3][3] 
)
Parameters
meshpointer to the mesh structure.
metpointer to the sol structure.
np0index of edge's extremity.
ntnormal direction at the ridge point.
mrcomputed metric tensor.
rbasis in which the metric is diagonal
Returns
0 if fail, 1 if the metric is build with respect to n1, 2 if it is build with respect to n2.

Build metric tensor at ridge point p0, when the 'good' normal direction is given by nt and store the basis vectors in r.

Definition at line 751 of file mettools.c.

Here is the caller graph for this function:

◆ MMG5_eigenvmat_buildnonsym()

static void MMG5_eigenvmat_buildnonsym ( MMG5_pMesh  mesh,
int8_t  dim,
double  m[],
double  lambda[],
double  v[],
double  iv[] 
)
inlinestatic
Parameters
meshpointer to the mesh structure.
mmatrix array.
dimmatrix size.
lambdaeigenvalues array.
vdouble array of right eigenvectors.
ivdouble array of left eigenvectors.
Returns
1 if success, 0 if failure.

Recompose a generic-size non-symmetric matrix from its eigenvalue decomposition.

Warning
Eigenvectors in Mmg are stored as matrix rows (the first dimension of the double array spans the number of eigenvectors, the second dimension spans the number of entries of each eigenvector).

Definition at line 100 of file mettools.c.

Here is the caller graph for this function:

◆ MMG5_eigenvmat_buildsym()

static void MMG5_eigenvmat_buildsym ( MMG5_pMesh  mesh,
int8_t  dim,
double  m[],
double  lambda[],
double  v[] 
)
inlinestatic
Parameters
meshpointer to the mesh structure.
dimmatrix size.
mmatrix array.
lambdaeigenvalues array.
varray of eigenvectors.

Recompose a generic-size symmetric matrix from its eigenvalue decomposition.

Warning
Eigenvectors in Mmg are stored as matrix rows (the first dimension of the double array spans the number of eigenvectors, the second dimension spans the number of entries of each eigenvector).

Definition at line 52 of file mettools.c.

Here is the caller graph for this function:

◆ MMG5_eigenvmat_check()

int MMG5_eigenvmat_check ( MMG5_pMesh  mesh,
int8_t  dim,
int8_t  symmat,
double  m[],
double  mnew[] 
)
Parameters
meshpointer to the mesh structure.
dimmatrix size.
symmatinteger flag (1 if the matrix is symmetric, 0 otherwise).
minput matrix array. <param mnew output matrix array.
Returns
1 if success, 0 if failure.

Check the recomposition of a matrix from its numerical eigenvalue decomposition.

Definition at line 233 of file mettools.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_eigenvmatnonsym2d()

int MMG5_eigenvmatnonsym2d ( MMG5_pMesh  mesh,
double  m[],
double  lambda[],
double  v[][2] 
)
Parameters
meshpointer to the mesh structure.
mmatrix array.
lambdaeigenvalues array.
vdouble array of eigenvectors.
Returns
1 if success, 0 if failure.

Recompose a 2x2 non-symmetric matrix from its eigenvalue decomposition.

Warning
Eigenvectors in Mmg are stored as matrix rows (the first dimension of the double array spans the number of eigenvectors, the second dimension spans the number of entries of each eigenvector).

Definition at line 184 of file mettools.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_eigenvmatnonsym3d()

int MMG5_eigenvmatnonsym3d ( MMG5_pMesh  mesh,
double  m[],
double  lambda[],
double  v[][3] 
)
Parameters
meshpointer to the mesh structure.
mmatrix array.
lambdaeigenvalues array.
vdouble array of eigenvectors.
Returns
1 if success, 0 if failure.

Recompose a 3x3 non-symmetric matrix from its eigenvalue decomposition.

Warning
Eigenvectors in Mmg are stored as matrix rows (the first dimension of the double array spans the number of eigenvectors, the second dimension spans the number of entries of each eigenvector).

Definition at line 209 of file mettools.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_eigenvmatsym2d()

int MMG5_eigenvmatsym2d ( MMG5_pMesh  mesh,
double  m[],
double  lambda[],
double  v[][2] 
)
Parameters
meshpointer to the mesh structure.
mmatrix array.
lambdaeigenvalues array.
vdouble array of eigenvectors.
Returns
1 if success, 0 if failure.

Recompose a 2x2 symmetric matrix from its eigenvalue decomposition.

Warning
Eigenvectors in Mmg are stored as matrix rows (the first dimension of the double array spans the number of eigenvectors, the second dimension spans the number of entries of each eigenvector).

Definition at line 144 of file mettools.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_eigenvmatsym3d()

int MMG5_eigenvmatsym3d ( MMG5_pMesh  mesh,
double  m[],
double  lambda[],
double  v[][3] 
)
Parameters
meshpointer to the mesh structure.
mmatrix array.
lambdaeigenvalues array.
vdouble array of eigenvectors.
Returns
1 if success, 0 if failure.

Recompose a 3x3 symmetric matrix from its eigenvalue decomposition.

Warning
Eigenvectors in Mmg are stored as matrix rows (the first dimension of the double array spans the number of eigenvectors, the second dimension spans the number of entries of each eigenvector).

Definition at line 164 of file mettools.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_intersecmet22()

int MMG5_intersecmet22 ( MMG5_pMesh  mesh,
double *  m,
double *  n,
double *  mr 
)
Parameters
meshpointer to the mesh structure.
mpointer to a \((2x2)\) metric.
npointer to a \((2x2)\) metric.
mrcomputed \((2x2)\) metric.
Returns
0 if fail, 1 otherwise.

Compute the intersected (2 x 2) metric from metrics m and n : take simultaneous reduction, and proceed to truncation in sizes.

Definition at line 814 of file mettools.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_intersecmet33()

int MMG5_intersecmet33 ( MMG5_pMesh  mesh,
double *  m,
double *  n,
double *  mr 
)
Parameters
meshpointer to the mesh structure.
mpointer to a \((3x3)\) metric.
npointer to a \((3x3)\) metric.
mrcomputed \((3x3)\) metric.
Returns
0 if fail, 1 otherwise.

Compute the intersected (3 x 3) metric from metrics m and n : take simultaneous reduction, and proceed to truncation in sizes.

Definition at line 924 of file mettools.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_intmetsavedir()

int MMG5_intmetsavedir ( MMG5_pMesh  mesh,
double *  m,
double *  n,
double *  mr 
)
Parameters
meshpointer to the mesh structure.
mpointer to the first metric to intersect.
npointer to the second metric to intersect.
mrpointer to the computed intersected metric.
Returns
1.

Compute the intersected (2 x 2) metric between metrics m and n, PRESERVING the directions of m. Result is stored in mr.

Definition at line 635 of file mettools.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_mmgIntextmet()

int MMG5_mmgIntextmet ( MMG5_pMesh  mesh,
MMG5_pSol  met,
MMG5_int  np,
double  me[6],
double  n[3] 
)
Parameters
meshpointer to the mesh structure.
metpointer to the metric structure.
npglobal index of vertex in which we intersect the metrics.
mephysical metric at point np.
nnormal or tangent at point np.
Returns
0 if fail, 1 otherwise.

Intersect the surface metric held in np (supported in tangent plane of np) with 3*3 physical metric in me. For ridge points, this function fill the \( p_0 \rightarrow m[3]\) and \( p_0 \rightarrow m[4]\) fields that contains respectively the specific sizes in the \(n_1\) and \(n_2\) directions.

Case of a singular point : since MMG5_defmetsin() computes an isotropic metric, scale it by the physical metric while keeping it isotropic

  1. Compute minimum size in physical metric. Note that, if we enforce an isotropic metric at singular points, we have 2 direct choices:
    • use the maximal size to make the physical metric iso. In a first guess it seems to be a good idea to limit the impact of singular points over the mesh but in practice it leads to collapse too much. See the following pictures of adaptation over a constant aniso metric with mmgs without gradation and with gradation.
      Max siz on sin points, no gradation
      Max siz on sin points, with gradation
    • use the minimal size to make the physical metric iso. Adaptation over a constant aniso metric with mmgs without gradation shows the creation of a small element at each corner. The computed iso size correspond to the size imposed on the top surface. With gradation, the gradation removes the anisotropy everywhere so the metric at corners has no effect).
      Max siz on sin points, no gradation
      Max siz on sin points, with gradation
  2. Truncate physical size with respect to mesh constraints
  3. Overwrite diagonal metric if physical metric prescribes smaller sizes

Case of a ridge point : take sizes in 3 directions t,n1,u

  1. Size prescribed by metric me in direction u1 = n1 ^ t
  2. Size prescribed by metric me in direction u2 = n2 ^ t
  3. Size prescribed by metric me in direction n1
  4. Size prescribed by metric me in direction n2

Case of a ref, or regular point : intersect metrics in tangent plane

  1. Expression of both metrics in tangent plane
  2. Intersection of metrics in the tangent plane
  3. Back to the canonical basis of \mathbb{R}^3 : me = ^tR*mr*R : mtan and metan are reused
  4. Truncate the metric in the third direction (because me was not truncated)

Definition at line 1139 of file mettools.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_paratmet()

int MMG5_paratmet ( double  c0[3],
double  n0[3],
double  m[6],
double  c1[3],
double  n1[3],
double  mt[6] 
)
Parameters
c0table of the coordinates of the starting point.
n0normal at the starting point.
mmetric to be transported.
c1table of the coordinates of the ending point.
n1normal at the ending point.
mtcomputed metric.
Returns
0 if fail, 1 otherwise.

Parallel transport of a metric tensor field, attached to point c0, with normal n0, to point c1, with normal n1.

Definition at line 1390 of file mettools.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_sort_eigenv()

void MMG5_sort_eigenv ( int8_t  dim,
double *  lambda,
double *  vp,
double *  swap,
int8_t *  perm 
)
Parameters
dimsquare matrix size
lambdaeigenvalues array
vpeigenvectors array
swapswap array
permpermutation array

Sort and permute eigenvalues (and eigenvectors) in increasing order.

Definition at line 279 of file mettools.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_test_eigenvmatnonsym2d()

int MMG5_test_eigenvmatnonsym2d ( MMG5_pMesh  mesh,
double *  mex,
double  lambdaex[],
double  vpex[][2],
double  ivpex[][2] 
)
Parameters
meshpointer to the mesh structure.
mextest matrix array.
lambdaexexact eigenvalues array.
vpexdouble array of exact right eigenvectors.
ivpexdouble array of exact right eigenvectors inverse.
Returns
1 if success, 0 if failure.

For a 2x2 non-symmetric matrix, Test:

  • the recomposition of the matrix from its exact eigendecomposition;
  • the computation of the eigenvalues of the matrix;
  • the computation of the eigenvectors of the matrix;
  • the recomposition of the matrix from its numerical eigendecomposition.

Recompose matrix from its eigendecomposition

Compute eigendecomposition

Compute both eigendecomposition and recomposition, and check matrix

Definition at line 379 of file mettools.c.

Here is the call graph for this function:

◆ MMG5_test_eigenvmatnonsym3d()

int MMG5_test_eigenvmatnonsym3d ( MMG5_pMesh  mesh,
double *  mex,
double  lambdaex[],
double  vpex[][3],
double  ivpex[][3] 
)
Parameters
meshpointer to the mesh structure.
mextest matrix array.
lambdaexexact eigenvalues array.
vpexdouble array of exact right eigenvectors.
ivpexdouble array of exact right eigenvectors inverse.
Returns
1 if success, 0 if failure.

For a 3x3 non-symmetric matrix, Test:

  • the recomposition of the matrix from its exact eigendecomposition;
  • the computation of the eigenvalues of the matrix;
  • the computation of the eigenvectors of the matrix;
  • the recomposition of the matrix from its numerical eigendecomposition.

Recompose matrix from its eigendecomposition

Compute eigendecomposition

Compute both eigendecomposition and recomposition, and check matrix

Definition at line 536 of file mettools.c.

Here is the call graph for this function:

◆ MMG5_test_eigenvmatsym2d()

int MMG5_test_eigenvmatsym2d ( MMG5_pMesh  mesh,
double *  mex,
double  lambdaex[],
double  vpex[][2] 
)
Parameters
meshpointer to the mesh structure.
mextest matrix array.
lambdaexexact eigenvalues array.
vpexdouble array of exact eigenvectors.
Returns
1 if success, 0 if failure.

For a 2x2 symmetric matrix, Test:

  • the recomposition of the matrix from its exact eigendecomposition;
  • the computation of the eigenvalues of the matrix;
  • the computation of the eigenvectors of the matrix;
  • the recomposition of the matrix from its numerical eigendecomposition.

Recompose matrix from its eigendecomposition

Compute eigendecomposition

Compute both eigendecomposition and recomposition, and check matrix

Definition at line 301 of file mettools.c.

Here is the call graph for this function:

◆ MMG5_test_eigenvmatsym3d()

int MMG5_test_eigenvmatsym3d ( MMG5_pMesh  mesh,
double *  mex,
double  lambdaex[],
double  vpex[][3] 
)
Parameters
meshpointer to the mesh structure.
mextest matrix array.
lambdaexexact eigenvalues array.
vpexdouble array of exact eigenvectors.
Returns
1 if success, 0 if failure.

For a 3x3 symmetric matrix, Test:

  • the recomposition of the matrix from its exact eigendecomposition;
  • the computation of the eigenvalues of the matrix;
  • the computation of the eigenvectors of the matrix; the recomposition of the matrix from its numerical eigendecomposition.

Recompose matrix from its eigendecomposition

Compute eigendecomposition

Compute both eigendecomposition and recomposition, and check matrix

Definition at line 456 of file mettools.c.

Here is the call graph for this function:

◆ MMG5_test_intersecmet22()

int MMG5_test_intersecmet22 ( MMG5_pMesh  mesh)
Parameters
meshpointer to the mesh structure.
Returns
0 if fail, 1 otherwise.

Test the intersection of (2 x 2) metrics.

Compute intersection m^{-1}n

Iteratively Recompute intersection of the result with (m,n), changing the matrix to be inverted.

Compute the intersection with n, invert n

Compute the intersection with n, invert intnum

Compute the intersection with n, invert n

Compute the intersection with m, invert intnum

Definition at line 962 of file mettools.c.

Here is the call graph for this function:

◆ MMG5_test_intersecmet33()

int MMG5_test_intersecmet33 ( MMG5_pMesh  mesh)
Parameters
meshpointer to the mesh structure.
Returns
0 if fail, 1 otherwise.

Test the intersection of (3 x 3) metrics.

Compute intersection m^{-1}n

Iteratively Recompute intersection of the result with (m,n), changing the matrix to be inverted.

Compute the intersection with n, invert n

Compute the intersection with n, invert intnum

Compute the intersection with n, invert n

Compute the intersection with m, invert intnum

Definition at line 1047 of file mettools.c.

Here is the call graph for this function: