Mmg
Simplicial remeshers (mesh adaptation, isovalue discretization, lagrangian movement)
Macros | Functions | Variables
eigenv.c File Reference

Find eigenvalues and eigenvectors of matrix. More...

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include <stdlib.h>
#include <stdint.h>
#include "eigenv_private.h"
#include "mmgcommon_private.h"
Include dependency graph for eigenv.c:

Go to the source code of this file.

Macros

#define MG_EIGENV_EPS27   1.e-27
 
#define MG_EIGENV_EPS13   1.e-13
 
#define MG_EIGENV_EPS10   1.e-10
 
#define MG_EIGENV_EPS5e6   5.e-06
 
#define MG_EIGENV_EPS6   1.e-06
 
#define MG_EIGENV_EPS2e6   2.e-06
 
#define MG_EIGENV_EPS5   1.e-05
 
#define MAXTOU   50
 
#define egal(x, y)
 

Functions

static int newton3 (double p[4], double x[3])
 Find root(s) of a polynomial of degree 3.
 
static int MMG5_check_accuracy (double mat[6], double lambda[3], double v[3][3], double w1[3], double w2[3], double w3[3], double maxm, int order, int symmat)
 
int MMG5_eigenv3d (int symmat, double *mat, double lambda[3], double v[3][3])
 Find eigenvalues and vectors of a 3x3 matrix.
 
int MMG5_eigenv2d (int symmat, double *mat, double lambda[2], double vp[2][2])
 Find eigenvalues and vectors of a 2x2 matrix.
 
int MMG5_eigen2 (double *mm, double *lambda, double vp[2][2])
 Find eigenvalues and vectors of a 2x2 matrix.
 
int MMG5_eigensym (double m[3], double lambda[2], double vp[2][2])
 

Variables

static double Id [3][3]
 Identity matrix.
 

Detailed Description

Find eigenvalues and eigenvectors of matrix.

Author
Cécile Dobrzynski (Bx INP/Inria/UBordeaux)
Pascal Frey (UPMC)
Version
5

Find eigenvalues and eigenvectors of 2x2 or 3x3 symetric definite positive matrix.

Definition in file eigenv.c.

Macro Definition Documentation

◆ egal

#define egal (   x,
 
)
Value:
( \
( ((x) == 0.0f) ? (fabs(y) < MG_EIGENV_EPS6) : \
( ((y) == 0.0f) ? (fabs(x) < MG_EIGENV_EPS6) : \
(fabs((x)-(y)) / (fabs(x) + fabs(y)) < MG_EIGENV_EPS2e6) ) ) )
#define MG_EIGENV_EPS2e6
Definition: eigenv.c:51
#define MG_EIGENV_EPS6
Definition: eigenv.c:50

Check if numbers x and y are equal.

Definition at line 59 of file eigenv.c.

◆ MAXTOU

#define MAXTOU   50

Definition at line 53 of file eigenv.c.

◆ MG_EIGENV_EPS10

#define MG_EIGENV_EPS10   1.e-10

Definition at line 48 of file eigenv.c.

◆ MG_EIGENV_EPS13

#define MG_EIGENV_EPS13   1.e-13

Definition at line 47 of file eigenv.c.

◆ MG_EIGENV_EPS27

#define MG_EIGENV_EPS27   1.e-27

Definition at line 46 of file eigenv.c.

◆ MG_EIGENV_EPS2e6

#define MG_EIGENV_EPS2e6   2.e-06

Definition at line 51 of file eigenv.c.

◆ MG_EIGENV_EPS5

#define MG_EIGENV_EPS5   1.e-05

Definition at line 52 of file eigenv.c.

◆ MG_EIGENV_EPS5e6

#define MG_EIGENV_EPS5e6   5.e-06

Definition at line 49 of file eigenv.c.

◆ MG_EIGENV_EPS6

#define MG_EIGENV_EPS6   1.e-06

Definition at line 50 of file eigenv.c.

Function Documentation

◆ MMG5_check_accuracy()

static int MMG5_check_accuracy ( double  mat[6],
double  lambda[3],
double  v[3][3],
double  w1[3],
double  w2[3],
double  w3[3],
double  maxm,
int  order,
int  symmat 
)
static
Parameters
matpointer to a 3x3 matrix.
lambdaeigenvalues.
veigenvectors.
w1temporary array to perform the matrix cross product.
w2temporary array to perform the matrix cross product.
w3temporary array to perform the matrix cross product.
maxmmaximal value of the matrix used for normalization.
orderorder of eigenvalues (1,2,3) or 0 if failed.
symmat0 if matrix is not symetric, 1 otherwise.
Returns
1 if success, 0 if fail.

Check the accuracy of the eigenvalues and vectors computation of a 3x3 matrix (symetric).

Definition at line 311 of file eigenv.c.

Here is the caller graph for this function:

◆ MMG5_eigen2()

int MMG5_eigen2 ( double *  mm,
double *  lambda,
double  vp[2][2] 
)

Find eigenvalues and vectors of a 2x2 matrix.

Parameters
mmpointer to the matrix.
lambdapointer to the output eigenvalues.
vpeigenvectors.
Returns
1.
Warning
not used for now

Definition at line 858 of file eigenv.c.

Here is the caller graph for this function:

◆ MMG5_eigensym()

int MMG5_eigensym ( double  m[3],
double  lambda[2],
double  vp[2][2] 
)
inline
Parameters
mterms of symetric matrix \(2x2\).
lambdaeigenvalues of m.
vpeigenvectors of m.
Returns
order of the eigenvalues.

Compute eigenelements of a symetric matrix m. Eigenvectors are orthogonal.

Definition at line 973 of file eigenv.c.

Here is the caller graph for this function:

◆ MMG5_eigenv2d()

int MMG5_eigenv2d ( int  symmat,
double *  mat,
double  lambda[2],
double  vp[2][2] 
)

Find eigenvalues and vectors of a 2x2 matrix.

Parameters
symmat0 if matrix is not symetric, 1 otherwise.
matpointer to the matrix.
lambdaeigenvalues.
veigenvectors.
Returns
order of eigenvalues (1,2) or 0 if failed.
Remarks
the i^{th} eigenvector is stored in v[i][.].

Definition at line 780 of file eigenv.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ MMG5_eigenv3d()

int MMG5_eigenv3d ( int  symmat,
double *  mat,
double  lambda[3],
double  v[3][3] 
)

Find eigenvalues and vectors of a 3x3 matrix.

Parameters
symmat0 if matrix is not symetric, 1 otherwise.
matpointer to the matrix.
lambdaeigenvalues.
veigenvectors.
Returns
order of eigenvalues (1,2,3) or 0 if failed.
Remarks
the i^{th} eigenvector is stored in v[i][.].

rows of A-lambda[2]*I

rows of A-lambda[0]*I

Definition at line 385 of file eigenv.c.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ newton3()

static int newton3 ( double  p[4],
double  x[3] 
)
static

Find root(s) of a polynomial of degree 3.

Parameters
ppolynomial coefficients (b=p[2], c=p[1], d=p[0]).
xroot(s) of polynomial.
Returns
0 if no roots.
1 for 3 roots.
2 for 2 roots.
3 for 1 root.

Find root(s) of a polynomial of degree 3: \(P(x) = x^3+bx^2+cx+d\).

Definition at line 86 of file eigenv.c.

Here is the caller graph for this function:

Variable Documentation

◆ Id

double Id[3][3]
static
Initial value:
= {
{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 1.0} }

Identity matrix.

Definition at line 67 of file eigenv.c.